![]() ELEKTROENERGETIKA |
VESTI FIRME |
BAZA EE EE BLOG |
DOGAĐAJI FAKULTETI |
KNJIGE ČASOPISI |
POSLOVI LINKOVI |
SISTEMI ISTORIJAT |
![]() ![]() ![]() | ![]() |
![]() |
![]() |
KNJIGE NA ENGLESKOM
EEE
EEE
SLEDEĆA > V. Vittal - Power System Control and Stability D. Infield - Renewable Energy in Power Systems S. Cuk - Power Electronics Vol 1-4 C. Bayliss - Transmission and Distribution Electrical Engineering E. Fuchs - Power Quality in Power Systems and Electrical Machines W. H. Smith - Electric Power System Reliability A. M. Sleva - Protective Relay Principles T. Wildi - Electrical Machines, Drives and Power Systems Q. Yang - Smart Power Distribution Systems: Control, Communication, and Optimization S. Vadari - Smart Grid Redefined: Transformation of the Electric Utility
EEEEEE
SLEDEĆA >
Prikaz 1 do 10 od ukupno 99 knjiga na engleskom ![]() |
A.S. Morris - Measurement and Instrumentation Principles Measurement and Instrumentation, 2nd Edition Theory and Application by Alan Morris Reza Langari eBook ISBN: 9780128011324 Paperback ISBN: 9780128008843 Imprint: Academic Press Published Date: 7th September 2015 Page Count: 726 Description Measurement and Instrumentation: Theory and Application, Second Edition, introduces undergraduate engineering students to measurement principles and the range of sensors and instruments used for measuring physical variables. This updated edition provides new coverage of the latest developments in measurement technologies, including smart sensors, intelligent instruments, microsensors, digital recorders, displays, and interfaces, also featuring chapters on data acquisition and signal processing with LabVIEW from Dr. Reza Langari. Written clearly and comprehensively, this text provides students and recently graduated engineers with the knowledge and tools to design and build measurement systems for virtually any engineering application. Key Features Provides early coverage of measurement system design to facilitate a better framework for understanding the importance of studying measurement and instrumentation Covers the latest developments in measurement technologies, including smart sensors, intelligent instruments, microsensors, digital recorders, displays, and interfaces Includes significant material on data acquisition and signal processing with LabVIEW Extensive coverage of measurement uncertainty aids students’ ability to determine the accuracy of instruments and measurement systems Readership Junior and senior undergraduate engineering students taking measurement and instrumentation courses primarily in mechanical and aerospace engineering departments Table of Contents Preface Acknowledgement Chapter 1. Fundamentals of Measurement Systems 1.1. Introduction 1.2. Measurement Units 1.3. Measurement System Design 1.4. Measurement System Applications 1.5. Summary 1.6. Problems Chapter 2. Instrument Types and Performance Characteristics 2.1. Introduction 2.2. Review of Instrument Types 2.3. Static Characteristics of Instruments 2.4. Dynamic Characteristics of Instruments 2.5. Necessity for Calibration 2.6. Summary 2.7. Problems Chapter 3. Measurement Uncertainty 3.1. Introduction 3.2. Sources of Systematic Error 3.3. Reduction of Systematic Errors 3.4. Quantification of Systematic Errors 3.5. Sources and Treatment of Random Errors 3.6. Induced Measurement Noise 3.7. Techniques for Reducing Induced Measurement Noise 3.8. Summary 3.9. Problems Chapter 4. Statistical Analysis of Measurements Subject to Random Errors 4.1. Introduction 4.2. Mean and Median Values 4.3. Standard Deviation and Variance 4.4. Graphical Data Analysis Techniques—Frequency Distributions 4.5. Gaussian (Normal) Distribution 4.6. Standard Gaussian Tables (z-Distribution) 4.7. Standard Error of the Mean 4.8. Estimation of Random Error in a Single Measurement 4.9. Distribution of Manufacturing Tolerances 4.10. Chi-Squared (χ2) Distribution 4.11. Goodness of Fit to a Gaussian Distribution 4.12. Rogue Data Points (Data Outliers) 4.13. Student t-Distribution 4.14. Aggregation of Measurement System Errors 4.15. Summary 4.16. Problems Chapter 5. Calibration of Measuring Sensors and Instruments 5.1. Introduction 5.2. Principles of Calibration 5.3. Control of Calibration Environment 5.4. Calibration Chain and Traceability 5.5. Calibration Records 5.6. Summary 5.7. Problems Chapter 6. Data Acquisition and Signal Processing 6.1. Introduction 6.2. Preliminary Definitions 6.3. Sensor Signal Characteristics 6.4. Aliasing 6.5. Quantization 6.6. Analog Signal Processing 6.7. Passive Filters 6.8. Active Filters Using Op-Amps 6.9. Signal Amplification 6.10. Digital Filters 6.11. Summary 6.12. Exercises 6.13. Appendix Chapter 7. Variable Conversion 7.1. Introduction 7.2. Bridge Circuits 7.3. Resistance Measurement 7.4. Inductance Measurement 7.5. Capacitance Measurement 7.6. Current Measurement 7.7. Frequency Measurement 7.8. Phase Measurement 7.9. Summary 7.10. Problems Chapter 8. Measurement Signal Transmission 8.1. Introduction 8.2. Electrical Transmission 8.3. Pneumatic Transmission 8.4. Fiber Optic Transmission 8.5. Optical Wireless Telemetry (Open Air Path Transmission) 8.6. Radio Telemetry (Radio Wireless Transmission) 8.7. Digital Transmission Protocols 8.8. Summary 8.9. Problems Chapter 9. Display, Recording, and Presentation of Measurement Data 9.1. Introduction 9.2. Display of Measurement Signals 9.3. Recording of Measurement Data 9.4. Presentation of Data 9.5. Summary 9.6. Problems Chapter 10. Intelligent Devices 10.1. Introduction 10.2. Principles of Digital Computation 10.3. Intelligent Devices 10.4. Communication with Intelligent Devices 10.5. Summary 10.6. Problems Chapter 11. Measurement Reliability and Safety Systems 11.1. Introduction 11.2. Reliability 11.3. Safety Systems 11.4. Summary 11.5. Problems Chapter 12. Data Acquisition with LabVIEW 12.1. Introduction 12.2. Computer-Based DAQ 12.3. Acquisition of Data 12.4. National Instruments LabVIEW 12.5. Introduction to Graphical Programming in LabVIEW 12.6. Elements of the Tools Palette 12.7. Logic Operations in LabVIEW 12.8. Loops in LabVIEW 12.9. Case Structure in LabVIEW 12.10. DAQ Using LabVIEW 12.11. LabVIEW Implementation of Digital Filters 12.12. Summary 12.13. Exercises Chapter 13. Sensor Technologies 13.1. Introduction 13.2. Capacitive Sensors 13.3. Resistive Sensors 13.4. Magnetic Sensors 13.5. Hall Effect Sensors 13.6. Piezoelectric Transducers 13.7. Strain Gauges 13.8. Piezoresistive Sensors 13.9. Optical Sensors 13.10. Ultrasonic Transducers 13.11. Nuclear Sensors 13.12. Microsensors (MEMS Sensors) 13.13. Nanosensors (NEMS Sensors) 13.14. Summary 13.15. Problems Chapter 14. Temperature Measurement 14.1. Introduction 14.2. Thermoelectric Effect Sensors (Thermocouples) 14.3. Varying Resistance Devices 14.4. Semiconductor Devices 14.5. Radiation Thermometers 14.6. Thermography (Thermal Imaging) 14.7. Thermal Expansion Methods 14.8. Fiber-Optic Temperature Sensors 14.9. Color Indicators 14.10. Change of State of Materials 14.11. Intelligent Temperature-Measuring Instruments 14.12. MEMS Temperature Sensors 14.13. Choice between Temperature Transducers 14.14. Calibration of Temperature Transducers 14.15. Summary 14.16. Problems Chapter 15. Pressure Measurement 15.1. Introduction 15.2. Diaphragms 15.3. Capacitive Pressure Sensor 15.4. Fiber-Optic Pressure Sensors 15.5. Bellows 15.6. Bourdon Tube 15.7. Manometers 15.8. Resonant Wire Devices 15.9. Electronic Pressure Gauges 15.10. MEMS Pressure Sensors 15.11. Special Measurement Devices for Low Pressures (Vacuum Pressures) 15.12. High-Pressure Measurement (Greater than 7000 bar) 15.13. Intelligent Pressure Transducers 15.14. Differential Pressure-Measuring Devices 15.15. Selection of Pressure Sensors 15.16. Calibration of Pressure Sensors 15.17. Summary 15.18. Problems Chapter 16. Flow Measurement 16.1. Introduction 16.2. Mass Flow Rate 16.3. Volume Flow Rate 16.4. Intelligent Flowmeters 16.5. Choice between Flowmeters for Particular Applications 16.6. Calibration of Flowmeters 16.7. Summary 16.8. Problems Chapter 17. Level Measurement 17.1. Introduction 17.2. Dipsticks 17.3. Float Systems 17.4. Pressure-Measuring Devices (Hydrostatic Systems) 17.5. Capacitive Devices 17.6. Ultrasonic Level Gauge 17.7. Radar (Microwave) Sensors 17.8. Nucleonic (or Radiometric) Sensors 17.9. Vibrating Level Sensor 17.10. Intelligent Level-Measuring Instruments 17.11. Choice between Different Level Sensors 17.12. Calibration of Level Sensors 17.13. Summary 17.14. Problems Chapter 18. Mass, Force, and Torque Measurement 18.1. Introduction 18.2. Mass (Weight) Measurement 18.3. Force Measurement 18.4. Torque Measurement 18.5. Calibration of Mass-, Force-, and Torque-Measuring Sensors 18.6. Summary 18.7. Problems Chapter 19. Translational Motion, Vibration, and Shock Measurement 19.1. Introduction 19.2. Displacement 19.3. Velocity 19.4. Acceleration 19.5. Vibration 19.6. Shock 19.7. Summary 19.8. Problems Chapter 20. Rotational Motion Transducers 20.1. Introduction 20.2. Rotational Displacement 20.3. Rotational Velocity 20.4. Rotational Acceleration 20.5. Summary 20.6. Problems Chapter 21. Summary of Other Measurements 21.1. Introduction 21.2. Dimension Measurement 21.3. Angle Measurement 21.4. Surface Flatness Measurement 21.5. Volume Measurement 21.6. Viscosity Measurement 21.7. Moisture Measurement 21.8. Sound Measurement 21.9. pH Measurement 21.10. Gas Sensing and Analysis 21.11. Summary 21.12. Problems Appendix 1. Imperial—Metric—SI Conversion Tables Appendix 2. Thevenin`s Theorem Appendix 3. Thermocouple Tables Appendix 4. Using Mathematical Tables Index |